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Abstract

Amultigrid finite element solver for the Cahn–Hilliard equation is presented that has mesh-independent convergence
rates for any time-step size, including in the important limit �! 0 which is examined via numerical examples. Numerics
are performed for a number of test problems which show that the features of the Cahn–Hilliard equation (minimising
interface measure, Lyapunov energy functional etc.) are preserved. We also explore the use of this solver in conjunction
with adaptive time-stepping and adaptive mesh strategies.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The Cahn–Hilliard equation [6,7] was originally introduced as a phenomenological model of phase sep-
aration in a binary alloy. More recently, it has been used to study phase transitions and interface dynamics,
related free boundary problems, multiphase fluids and polymer solutions, see [5,17,21] and the references
therein.

The equation, together with appropriate initial and boundary conditions,
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w� 1

�
U0ðcÞ þ �Dc ¼ 0 in XT :¼ X� ð0; T Þ; ð1bÞ

oc
on̂

¼ B
ow
on̂

¼ 0 on oXT :¼ oX� ð0; T Þ; ð1cÞ

cðx; 0Þ ¼ c0ðxÞ; ð1dÞ
where X � Rdðd ¼ 1; . . . ; 3Þ is a bounded polygonal domain and n̂ is the outward pointing unit normal to
X, form (in effect) a fourth order non-linear parabolic partial differential equation. The parameter � is a
measure of the interfacial thickness and U is a double well potential with its global minima at c = ±1,
typically
UðcÞ ¼ 1

4
ð1� c2Þ2. ð2Þ
For derivation and analysis of the equation we refer to [12,13,10,15] and the references therein. The mobil-
ity function B(c) is often taken to be constant (B ” 1). Here, we consider this choice as well as the thermo-
dynamically reasonable choice [8]
BðcÞ ¼ ½1� c2�þ :¼ maxf0; 1� c2g. ð3Þ
It is well known that the Cahn–Hilliard equation is a gradient flow of the Lyapunov energy functional:
JðcÞ ¼
Z
X

1

�
UðcÞ þ �

2
jrcj2 dx; ð4Þ
which is therefore non-increasing in time, we wish this to carry over to a discrete version of this functional
in our numerical scheme.

Numerical simulations of the Cahn–Hilliard equation are difficult on a normal computer in a reasonable
time because fourth order non-linear equations impose severe time-step restrictions on explicit methods
(s � h4) so implicit methods must be used. Additionally in order to fully capture the interface dynamics high
spatial resolution is required, typically at least 8–10 elements (see [14], if there are an insufficient number of
elements spurious numerical solutions can be introduced). In complicated problems that require uniform
refinement this leads to large algebraic problems to be solved at each time-step.

The interface profile is given by (see for example [11])
tanh
1

�
ffiffiffi
2

p x
� �

. ð5Þ
Thus, if we consider the interfacial region to be where the concentration c varies between �0.99 and 0.99 a
simple calculation yields that the interface has its width given by width �7.5� (we note that this is more than
twice as large as the interface for the ‘‘double-obstacle’’ free energy [4] which has width p�).

Traditionally iterative solution methods such as Gauss–Seidel have been used (for example [10]) but
these suffer from slow convergence rates, typically O(N), where N is the number of points in the discreti-
sation. Each iteration of a Gauss–Seidel solver is an O(N) operation and under a suitable choice of
semi-implicit temporal discretisation (see below) there are no time-step restrictions. This makes the total
work required for the Gauss–Seidel method O(N2). A non-linear multigrid method for a finite difference
approximation of this problem has recently been suggested by Kim et al. [17,18] which exhibits convergence
rates independent of N as long as a weak time-step restriction related to the initial data is observed. The
method presented here is an extension of that of Kornhuber and Krause [20] which has convergence rates
independent of N with no time-step restriction. Each iteration of this multigrid solver is an O(N) operation,
making the total work required O(N).
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The outline of this paper is as follows: in Section 2, we describe the discretisation of the equations by a
semi-implicit backward Euler method in time and continuous piecewise linear finite elements in space. Sec-
tion 3 describes the multigrid algorithm. Sections 4 and 5 discuss some numerical results in both one and
two space dimensions and in Sections 6 and 7, we look at how adaptive time-stepping and non-uniform
meshes effect the solver.
2. Discretisation

Consider a uniform discretisation in time by a semi-implicit backward Euler method, so that
c0(x) = c(x,0), cn(x) = c(x,sn), n = 1,. . .,NT:
cn � cn�1

s
�r � ðBðcn�1ÞrwnÞ ¼ 0; ð6aÞ

1

�
/ðcnÞ � 1

�
cn�1 � �Dcn � wn ¼ 0; ð6bÞ
where we have used the splitting
U0ðcÞ ¼ c3 � c ¼: /ðcÞ � c ð7Þ

so that / is a monotone function. The weak form of the equations is then given by:
cn � cn�1; v
� �

L2ðXÞ þ sðBðcn�1Þrwn;rvÞL2ðXÞ ¼ 0 8 v 2 H 1ðXÞ; ð8aÞ

�ðrcn;rvÞL2ðXÞ þ
1

�
/ðcnÞ � 1

�
cn�1 � wn; v

� �
L2ðXÞ

¼ 0 8 v 2 H 1ðXÞ; ð8bÞ
where H1(X) is the standard Sobolev space of L2(X) functions with first derivative in L2(X), and
ða; bÞL2ðXÞ :¼

R
Xa � bdx is the L2(X) inner product. This method of discretising the equations is known to

be unconditionally gradient stable [14] (stable for all time-step sizes), ensuring that the discrete free energy
decreases monotonically. However, we must be careful when choosing time-step sizes to ensure that the
dynamics of the system are accurately captured.

We discretise in space by continuous piecewise linear finite elements as follows. Given that X is a polyg-
onal domain we partition X into a set, Th, of disjoint open simplices j such that:

(1) hj: = diam(j),
(2) h :¼ maxj2Thfhjg,
(3) X ¼

S
j2Thj.

Associated with the partitioning is the finite element space
V h ¼ fv 2 CðXÞ : vjj is linear 8 j 2 Thg � H 1ðXÞ. ð9Þ

In the remainder of this paper we drop the h-superscript for finite dimensional spaces and functions for ease
of notation, thus V = Vh.

Let fxigNi¼1 be the nodes of Th and let fgig
N
i¼1 be the standard Lagrange �hat� basis functions (Fig. 1),
gi 2 V ; giðxjÞ ¼ dij 8 i; j ¼ 1; . . . ;N . ð10Þ

Thus, V is simply RN .

For u; v 2 CðXÞ, we introduce the lumped L2 inner product given by:
ðu; vÞh :¼
X
j

uðxjÞvðxjÞðgi; 1ÞL2ðXÞ. ð11Þ
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The fully discrete equations are therefore:
cn � cn�1; v
� �h þ sðBðcn�1Þrwn;rvÞL2ðXÞ ¼ 0 8 v 2 V ; ð12aÞ

�ðrcn;rvÞL2ðXÞ þ
1

�
/ðcnÞ � 1

�
cn�1 � wn; v

� �h

¼ 0 8 v 2 V ; ð12bÞ
where c,w 2 V. Using the matrices
Aij ¼ ðrgi;rgjÞL2ðXÞ;
Cðcn�1Þij :¼ Cij ¼ ðBðcn�1ðxiÞÞrgi;rgjÞL2ðXÞ;
Mii ¼ ðgi; 1ÞL2ðXÞ;
where M is the lumped mass matrix and the finite dimensional representations of c and w
c ¼
XN
i¼1

cðxiÞgi; w ¼
XN
i¼1

wðxiÞgi;
the resulting algebraic problem can be written as: for each time-step given a previous solution {cn�1,wn�1}
solve for {cn,wn}
Mcn �Mcn�1 þ sCwn ¼ 0; ð13aÞ

�Acn þ 1

�
M/ðcnÞ � 1

�
Mcn�1 �Mwn ¼ 0; ð13bÞ
with c0 an interpolation of the initial data and / is understood to operate pointwise.
3. The multigrid solver

We decompose the finite dimensional space:
V ¼
XL

l¼1

V l; ð14Þ
where the Vl � Vl+1 are obtained by successive (not necessarily uniform) refinements of the triangulation,
see Fig. 2.

We then solve the equations on each of these subspaces using a successive subspace refinement method
(see [25]), which involves solving a non-linear Gauss–Seidel iteration on each subspace. Each �coarse� grid
basis function is represented on the fine grid using standard prolongation operators (e.g., [24]); Fig. 3.

For each basis function on each level we use the following algorithm: Given a level l 2 {1,. . .,L}, a node
k 2 {1,. . .,Nl}, and the basis function for this node on this level glk, update c and w by
ckþ1 ¼ ck þ agkl ;w
kþ1 ¼ wk þ bgkl ;
(here we have dropped the time-step superscript for notational convenience) where a, b are the solution of
ðMðck þ agkl Þ; gkl Þ þ sðCðwk þ bgkl Þ; gkl Þ � ðb; gkl Þ ¼ 0; ð15aÞ

�ðAðck þ agkl Þ; gkl Þ þ
1

�
M/ðck þ agkl Þ �

1

�
b�Mðwk þ bgkl Þ; gkl

� �
¼ 0; ð15bÞ
with b =Mcn�1 and (x,y) = xTy the Euclidean inner product. This is equivalent to solving
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Fig. 1. A mesh and a typical basis function.
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a3a3 þ a2a2 þ a1aþ a0 ¼ 0; ð16aÞ

b ¼ ðb�Mck � sCwk � aMgkl ; g
k
l Þ

sðCgkl ; gkl Þ
; ð16bÞ
where
a3 ¼
1

�
ðMgkl ; g

k
l Þ;

a2 ¼
1

�
ðMckðgkl Þ

2
; gkl Þ;

a1 ¼ �Agkl þ
1

�
MðckÞ2gkl þ

ðMgkl ; g
k
l Þ

sðCgkl ; gkl Þ
Mgkl ; g

k
l

� �
;

a0 ¼ � 1

�
bþ �Ack �Mwk � ðb�Mck � sCwk; gkl Þ

sðCgkl ; gkl Þ

� �
Mgkl ; g

k
l

� �
.

The non-linear equation (16a) is solved using a secant iteration, in experiments typically 2–5 iterations were
required. The algorithm loops over all the basis functions on all the levels and is deemed to have converged
when the relative residual of the linear equation (13a) has been reduced by a specific tolerance, tol.

In the case V = VL, we recover the classical Gauss–Seidel method. Proof of convergence for this case is a
simple extension of the method used in [3]. It is well known that Gauss–Seidel is an O(N) solver per iter-
ation, that is the work required per iteration is proportional to the number of nodes of the triangulation.
The number of iterations required for convergence is also O(N), making the total work required O(N2). The
multigrid scheme is also O(N) per iteration because of the nesting of the subspaces. However, if the rate of
convergence is independent of the number of nodes, the total work is O(N). This means the multigrid algo-
rithm will be a much more efficient method of solving the Cahn–Hilliard equation, especially on compli-
cated problems when many nodes are required or when combined with adaptive mesh techniques.



Fig. 2. Possible refinements of the mesh.
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4. Numerical results – constant mobility

All problems are posed on a triangulation of the domain X: = [0,1]d, d = 1,2. In this section, we consider
the constant mobility case (B = 1).

4.1. Convergence rates

To illustrate the superiority of the multigrid solver, we present the comparative convergence rates of the
two methods for a single time-step of spinodal decomposition, the initial data is a random perturbation of
magnitude 0.1 about a mean composition of 0 with � = 0.05 and s = 0.001. From Fig. 4, it is clear that the
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Fig. 3. A coarse grid basis function on the fine grid.
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Fig. 4. Convergence rates for Gauss–Seidel (left) and multigrid (right).
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multigrid algorithm converges much faster than the Gauss–Seidel algorithm and since the work required for
an iteration of each is O(n) the multigrid algorithm provides a substantial decrease in the time required to
solve a problem. In particular, we draw the readers attention to the scales used on the x-axes.

The remainder of the examples presented here use a solver tolerence of tol = 10�6.
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4.2. One dimensional example

In many applications, we are either interested in the limit � ! 0 (c.f. [15,16]) or in very small �. Therefore,
we are interested in the behaviour of the solver in this limit. This requires small mesh size h which results in
large matrix systems to be solved.

Consider the problem with c0 = cos(px),s = 0.001; Tables 1 and 2 illustrate the maximum number of
iterations required for a time-step. We see that the performance of the Gauss–Seidel solver deteriorates
as � decreases while the multigrid does not initially see this effect. If we further reduce � then the iteration
count for the multigrid solver increases but the rate of convergence is still h-independent, Table 3, i.e., all we
are experiencing is a shift in the constant maximum number of iterations per time-step.

We note that it is only when � is small relative to s that the this happens. For accuracy reasons we would
like s � h, and hence s � �/10 since we wish to have around 10 elements in the interface so that it is properly
resolved. If we reduce s by the same rate as � or using a smaller time-step yields �-independent results,
Tables 4 and 5.

4.3. Two dimensional examples

4.3.1. Spinodal decomposition

Consider the case of spinodal decomposition in two spatial dimensions: the initial data is a random per-
turbation of magnitude 0.1 about a mean composition of 0. Tables 6 and 7 illustrate the maximum iteration
count per time-step for the early stages.
Table 1
Gauss–Seidel – s = 0.001 fixed

h �

0.08 0.04 0.02

1/32 188 318 830
1/64 714 1217 1720
1/128 2790 4774 6753

Table 2
Multigrid – s = 0.001 fixed

h �

0.08 0.04 0.02 0.01

1/32 8 8 8 8
1/64 8 8 8 8
1/128 8 8 8 8
1/256 7 8 8 8

Table 3
Multigrid – s = 0.001 fixed

h �

0.02 0.01 0.005 0.0025

1/256 8 8 15 29
1/512 8 8 15 30
1/1024 8 8 16 29
1/2048 8 8 15 29



Table 7
Spinodal decomposition – s = 0.001

h �

0.1 0.07 0.05

1/16 6 5 5
1/32 6 6 6
1/64 7 7 7
1/128 7 7 7

Table 5
Multigrid – s = 0.00025 fixed

h �

0.02 0.01 0.005 0.0025

1/256 8 8 8 9
1/512 8 8 7 9
1/1024 8 8 7 9
1/2048 8 8 8 9

Table 6
Spinodal decomposition – s = 0.005

h �

0.1 0.07 0.05

1/16 6 6 5
1/32 7 7 6
1/64 7 7 7
1/128 7 7 7

Table 4
Multigrid – s = �/10

h �

0.02 0.01 0.005 0.0025

1/256 8 8 8 8
1/512 8 8 8 8
1/1024 8 8 9 9
1/2048 8 8 8 9
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Again we see that the convergence is independent of the mesh size. Fig. 5 shows the evolution of the
solution at six different times. The solution rapidly separates into regions of c = ±1 and then over much
longer time-scales the regions evolve until we are left with an interface with minimal measure (c.f. Section
4.3.2). This is an example of the classical behaviour of the Cahn–Hilliard equation.

As discussed above, we are interested in retaining the Lyapunov qualities of the energy functional. The
finite element discretisation and gradient stability of this algorithm ensures that this is the case. Most
importantly the discrete total energy of the system decreases monotonically, Fig. 6.



Fig. 5. Spinodal decomposition, � = 0.05, s = 0.001, h = 1/128.
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4.3.2. Minimisation of the measure of the interface

It is known that the Cahn–Hilliard equation minimises the measure of the interface [21]. Thus, we expect
steady-state solutions to have interfaces that are either straight lines which divide the domain (as in the



Fig. 7. Evolution of a cross – � = 0.01, h = 1/128, s = 10�4.

298 D. Kay, R. Welford / Journal of Computational Physics 212 (2006) 288–304
example above) or arcs of circles. For example a cross degenerates into a circle, see Fig. 7. This took a max-
imum of 7 iterations per time-step.
5. Numerical results – degenerate mobility

In this section, we consider the equation with the degenerate mobility function B(c) = [1 � c2]+ and com-
pare the results with the constant mobility case, showing that the degeneracy does not affect the solver.

5.1. One dimensional example

Take initial data [2]:
c0ðxÞ ¼

1 if 0 6 x 6 1
3
� 1

20
;

20ð1
3
� xÞ if jx� 1

3
j 6 1

20
;

�20jx� 41
50
j if jx� 41

50
j 6 1

20
;

0 otherwise

8>>><
>>>:

ð17Þ
with � = 0.03, h = 1/256, s = 5 · 10�4. If we compare both types of mobility for this problem we see that
they have the same final solution but are significantly different during their evolution, Figs. 8 and 9.
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For constant mobility the solution diffuses throughout the whole of the domain causing the spreading of
the solution around the spike. The degenerate mobility limits the diffusion in the bulk regions so most of the
diffusion is through the interface, so the spike only diffuses through its interfaces, not through the whole
domain. See Table 8 for the maximum iteration count of the degenerate mobility case.



Table 8
Degenerate mobility

h �

0.06 0.03 0.015 0.0025

1/32 7 6 6 6
1/64 8 8 7 9
1/128 9 8 8 8
1/256 9 8 8 8

Table 9
Spinodal decomposition, degenerate mobility – s = 0.001

h �

0.01 0.07 0.05

1/16 6 6 6
1/32 7 7 7
1/64 7 7 7
1/128 7 7 7
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5.2. Two dimensional example

Consider the spinodal decomposition example from Section 4.3.1 but now with degenerate mobility; the
following maximum iteration counts were achieved, Table 9. From these examples it is clear that the solver
is also optimal (mesh independent convergence) in the degenerate mobility case.
6. Adaptive time-stepping

One of the difficulties in performing numerical simulations of the Cahn–Hilliard equation is the dif-
fering time scales over which the solution evolves. The initial stage where the two species separate oc-
curs very quickly while the evolution of the free boundaries to a steady state takes many magnitudes of
time longer. An adaptive time-stepping algorithm allows accurate solutions with much less work
required.

The sharp interface limit (i.e., � ! 0) of the Cahn–Hilliard equation is motion of the interface via a Mul-
lins–Sekerka law for constant mobility and motion by surface diffusion (Laplacian of the mean curvature)
for the degenerate mobility, [1,9,22]. Mullins–Sekerka flow is scale invariant under a scaling x ! kx,
t! k3t and surface diffusion under x ! kx, t! k4t, so the natural length scale of the solution should
evolve like ‘(t) � t1/3 or as ‘(t) � t1/4, respectively as t! 1. Kohn and Otto [19] proved that in a time aver-
aged sense this was in fact the maximum rate that evolution could occur for the Cahn–Hilliard equation.
This provides us with a �worse case� scenario of how much we expect the time-step to grow in an adaptive
regime. Following the scheme described in [23] we find that the mesh independent convergence rate for our
solver is retained. For the spinodal decomposition example above with this time-stepping algorithm we ob-
tain the following maximum iteration counts, Tables 10 and 11.

The robustness of the solver is also reproduced when a simple first order predictor–corrector scheme is
used. From this, we conclude that our algorithm can be used in conjunction with an adaptive time-stepping
regime.



Table 11
Multigrid – s = 0.01t1/4, degenerate mobility

h �

0.1 0.07 0.05

1/16 6 6 6
1/32 7 7 7
1/64 7 7 7
1/128 7 7 7

Table 10
Multigrid – s = 0.01t1/3, constant mobility

h �

0.1 0.07 0.05

1/16 6 6 6
1/32 7 7 7
1/64 7 7 7
1/128 7 7 7
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Fig. 10. Non-uniform mesh.
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7. Non-uniform meshes

The need for high spacial resolution in the interface means that with uniform mesh refinement the matrix
problem grows very large. However we only require large numbers of elements in the interface, not in the
bulk region where the solution is constant. Thus, in order to further improve the efficiency of the solver we
would like to couple it to an adaptive mesh strategy. Here, we present results that indicate such a coupling
would retain the optimality of the multigrid solver.

We consider the case of c0 = cos(px) so that the interface will be contained in a central strip of the do-
main. An example of the triangulation that we use for this problem is given in Fig. 10. Table 12 shows the
maximum iteration counts for this problem with s = 10�4.
Fig. 11. Non-uniform mesh.

Table 12
Non-uniform mesh

hinterface �

0.08 0.04 0.02

0.03 8 6 7
0.015 8 5 7
0.0075 7 5 6
0.0037 6 5 5



Table 13
Non-uniform mesh – cross

Level 6 7 8

Count 12 12 12
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Now consider the example of a cross given earlier. At a given time-step an adaptive mesh based on a
strategy of refinement in the interfacial region would look like Fig. 11.

The following iteration counts were obtained with � = 0.01, s = 0.001, Table 13.
From these examples, we can see that the multigrid method is not affected by the non-uniformity of the

grid. Additional experiments have shown that this is true as long as the triangles do not become too aniso-
tropic. Thus, we conclude that the multigrid algorithm used in conjunction with an adaptive mesh strategy
would still maintain mesh independent convergence rates.
8. Conclusions

We have presented a multigrid finite element solver for the Cahn–Hilliard equation that it efficient and
robust with respect to both mesh refinement and time-step size. The limit �! 0 has been investigated
numerically. Numerical experiments indicate that the solver can be coupled to both variable time-stepping
and adaptive mesh regimes to improve performance even further. We remark that this algorithm can also
be applied to similar degenerate fourth order p.d.e. problems, for example the thin film equation.
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